

Leonardo Electronics

# La grande azienda come catalizzatore di opportunità sul territorio

Nuovi sensori elettro-ottici per minisatelliti e microsatelliti

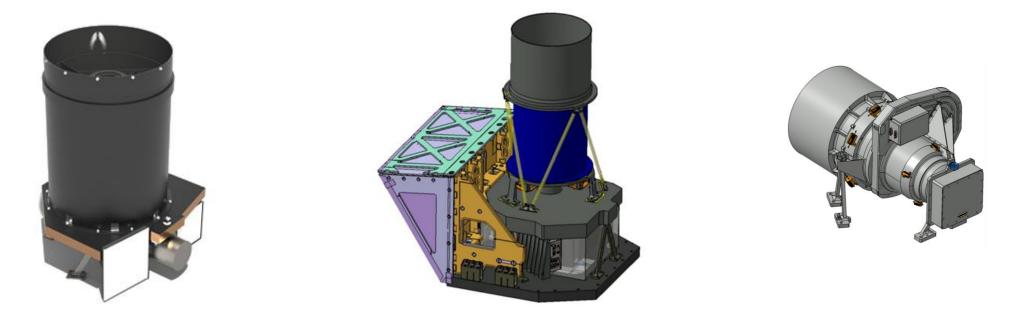
Distretto Toscano dell'Aerospazio - Opportunità e Sinergie

Pisa, 15 Novembre 2022



#### **Optical Payloads for Mini-Satellites**

Sensori Ottici per Mini-Satelliti




#### **Electro-Optical Earth Observation Systems for Remote Sensing applications**

#### A suite of compact E-O Instruments is under development for employment in Mini-Satellite platforms.

Nowadays, the availability of quasi-real-time satellite imagery is key for strategic and persistent intelligence, tactical support and commercial operations.

Small Satellites, based on compact Optical Sensors, are affordable also for those Countries willing to implement a "National" solution dedicated to the surveillance of the territory, of the coasts, of the sea.

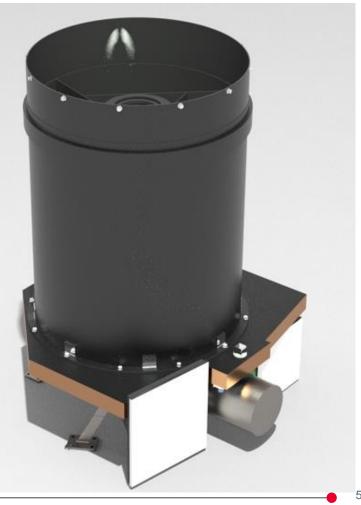


**Compact Very High Resolution Camera** 

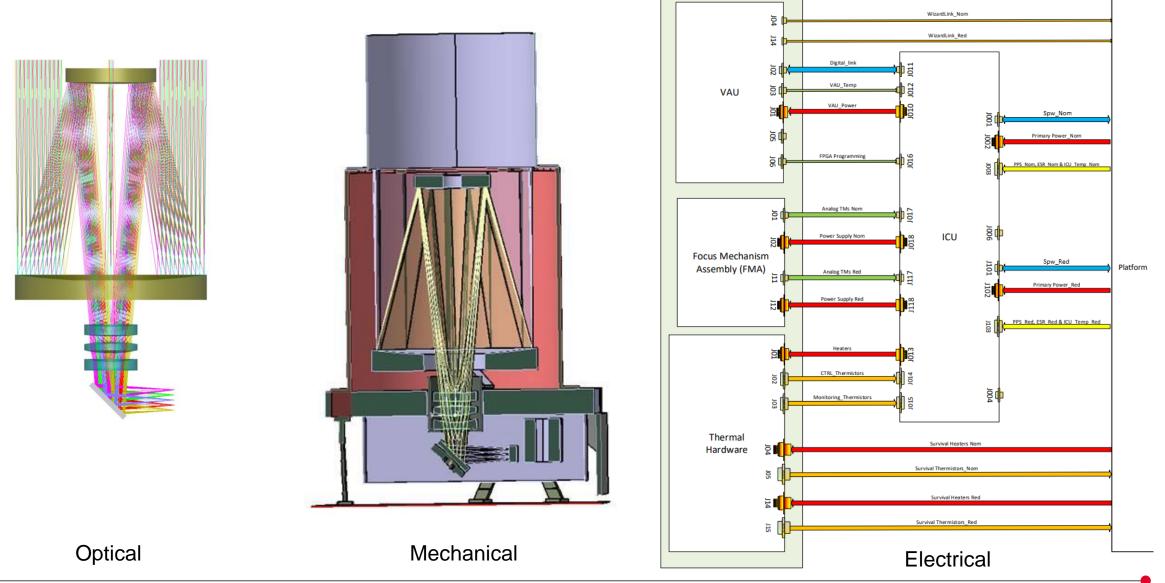
**Compact Hyperspectral Camera** 

#### **Thermal Infra-Red (TIR) Camera**

#### Very High Resolution payload (VHR)


Camera ad alta risoluzione




## **Very High Resolution Payload**

- The VHR camera has started its development in Leonardo with internal funding.
- Specification has been defined by ASI (Italian Space Agency) and a first proto-flight model has been proposed to the Agency in the frame of Platino program for a delivery by end 2024.
- P/L design targets applications for mini-satellite constellations.
- VHR camera features high resolution and high fidelity (SNR & MTF) imaging thanks to a large format TDI detector.
- L0 to L2 ground processors are under development too.

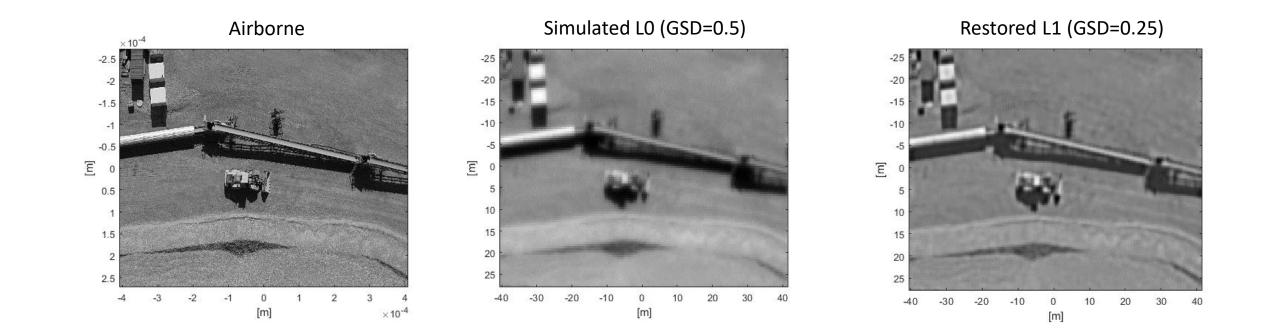
| Parameter                                                              | VHR Performances                                                                                                                                                                                                           |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Orbit                                                        | 400Km                                                                                                                                                                                                                      |
| Native GSD<br>@ Reference orbit                                        | PAN = 0.5m<br>MS = 2m                                                                                                                                                                                                      |
| Swath                                                                  | 8Km                                                                                                                                                                                                                        |
| P/L MTF                                                                | PAN > 0.15 @ L1<br>MS > 0.15 @ L0                                                                                                                                                                                          |
| VNIR Spectral<br>Bands<br>(up to 6 VIS/NIR<br>multi-spectral<br>bands) | PAN =640nm $\Delta\lambda$ =410nm<br>B1 $\lambda$ c=475nm $\Delta\lambda$ =70nm<br>B2 $\lambda$ c=555nm $\Delta\lambda$ =35nm<br>B3 $\lambda$ c=660nm $\Delta\lambda$ =35nm<br>B4 $\lambda$ c=865nm $\Delta\lambda$ =120nm |
| SNR<br>(can be improved<br>with slow down<br>manoeuvre)                | B1 > 155<br>B2 >160<br>B3 >162<br>B4 >110                                                                                                                                                                                  |
| Mass                                                                   | < 90 kg (including ICU and Harness)                                                                                                                                                                                        |
| Volume                                                                 | 775mm X 670mm X 1163 mm                                                                                                                                                                                                    |
| Power                                                                  | 135W                                                                                                                                                                                                                       |
| Reliability @3.5y                                                      | >0.95                                                                                                                                                                                                                      |



## **Very High Resolution Payload – Architectural Baseline**



OH


米

## **Very High Resolution Payload – Some Applications**

- In Maritime applications: suitable warnings generation to identify illegal activities/routes, trafficking, oil spills.
- In Ground Surveillance applications: monitoring of infrastructures, vegetation, movements of enemy positions, which are instrumental to civil, environmental and tactical observations.

| APPLICATION DOMAIN                  | THEMATIC AREA                                                                                                                                      |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                     | Detection and identification of small features (e.g. vehicles, roads, bushes).                                                                     |  |  |
| Land Precision Planning             | National mapping. map land use / land use changes, manage and protect natural resources, monitor urbanisation and plan infrastructure developments |  |  |
|                                     | Land management and crop yields                                                                                                                    |  |  |
| Agriculture precision<br>management | Identification and mapping of crop diseases                                                                                                        |  |  |
| management                          | Tree counting (palm trees, vineyards)                                                                                                              |  |  |
| Defense and Security                | imagery-delivered intelligence                                                                                                                     |  |  |
|                                     | Tactical planning in urban/densely populated areas                                                                                                 |  |  |
|                                     | Mitigation and assistance in critical events                                                                                                       |  |  |
| Homeland Security                   | Post-crisis assessment (earthquakes, volcanic eruptions)                                                                                           |  |  |
|                                     | Topography                                                                                                                                         |  |  |
| Hydrology                           | Drainage gradient on lands                                                                                                                         |  |  |
| Para dana                           | Forestry yields                                                                                                                                    |  |  |
| Forestry                            | Counteracting illicit deforestation                                                                                                                |  |  |
| Maritime and littoral               | Vessel reconnaissance and contamination                                                                                                            |  |  |
| surveillance                        | Harbour mapping                                                                                                                                    |  |  |
| Asset Monitoring                    | Road, rail and oil pipelines planning and maintenance                                                                                              |  |  |

#### Very High Resolution Payload – Examples of generated data



#### Hyperspectral payload (HYP)

**Camera iperspettrale** 



#### **Hyperspectral Observation**

Each material features its own fingerprint that can be recognised through its response to different wavelengths







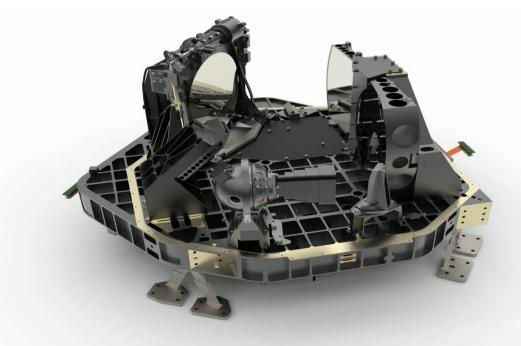




**PRISMA Satellite** 

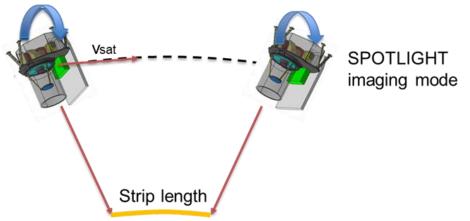
## **Leonardo HYP payload relies on a strong heritage:**

**PRISMA is the Italian (ASI) Hyperspectral instrument** for Earth observation developed by LEONARDO. It is composed of a high spatial (30 m) & spectral resolution (10 nm average) VIS-SWIR spectrometer and a Panchromatic camera (5 m).


PRISMA is flying since March 2019 and its heritage and lessons learnt have been conveyed in the HYP Payload.

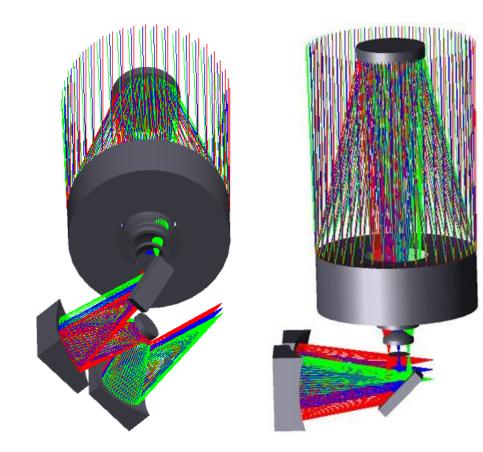
#### **Mission Objectives:**

- Environmental changes at a global level,
- Impact of human activities on ecosystems,
- Natural resources analysis for their management and environmental sustainability.


#### Main Features:

- ✓ 66 bands in VIS=400-1010 nm
- 174 bands in SWIR=920-2505 nm
- Co-registrated PAN camera (400-700 nm)

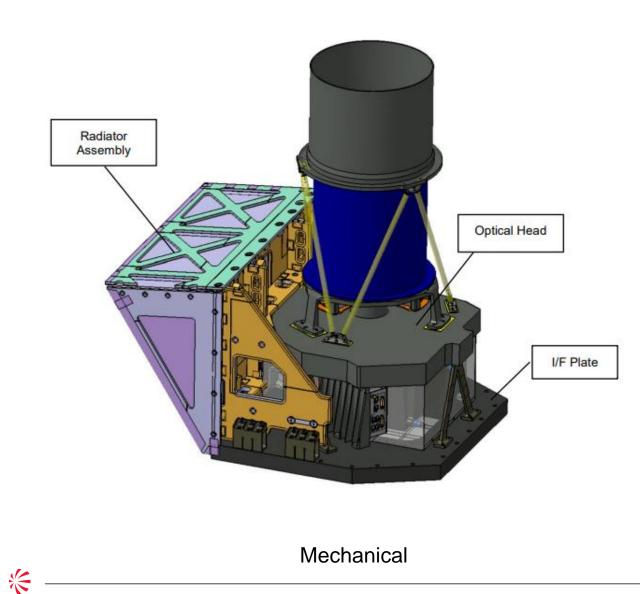


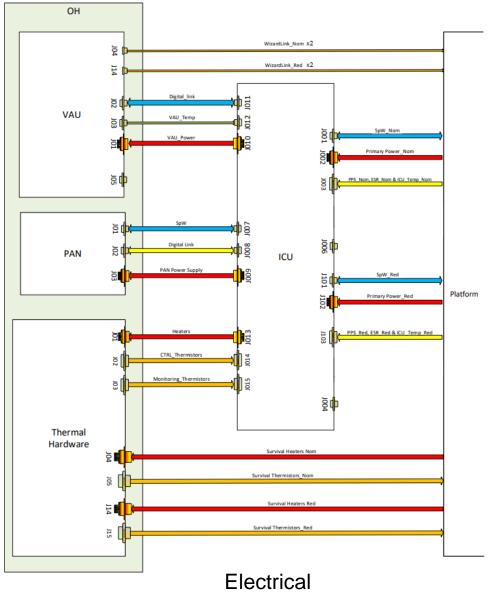

#### **Hyperspectral Payload**

- The HYP camera has started its development in Leonardo with internal funding.
- Specification has been defined by ASI (Italian Space Agency) and a first proto-flight model has been proposed to the Agency in the frame of Platino program for a delivery by end Q3 2024.
- P/L design targets applications based on mini-satellites constellations and takes advantage of Leonardo Heritage on PRISMA and CHIME project.
- HYP camera features high quality (SNR & MTF) imaging thanks to top class MCT cryogenic detector covering the full spectral range.



| Parameter                                                  | HYP Performances                                                                     |
|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Reference Orbit                                            | 515Km                                                                                |
| Native GSD<br>@ Reference orbit                            | STRIPMAP = 30m<br>SPOTLIGHT = 20 m<br>PAN = 5m                                       |
| Swath                                                      | 20 Km                                                                                |
| P/L MTF                                                    | HYP > 0.25<br>PAN > 0.10                                                             |
| Spectral Range<br>Spectral Resolution<br>Spectral Sampling | 400nm - 2500nm<br>Δλ < 10nm<br>SSI < 10nm                                            |
| SNR<br>With & without slow<br>down manoeuvre               | 350 @ λ=450nm<br>400 @ λ=600nm<br>230 @ λ=1000nm<br>200 @ λ=1600nm<br>100 @ λ=2300nm |
| Radiometric<br>Accuracy                                    | < 5%                                                                                 |
| Mass                                                       | <100 kg (including ICU and Harness)                                                  |
| Volume                                                     | 750mm X 991 mm X 1053 mm                                                             |
| Power                                                      | < 100W                                                                               |
| Reliability @3.5y                                          | > 0.95                                                                               |


#### Hyperspectral Payload – Architectural Baseline



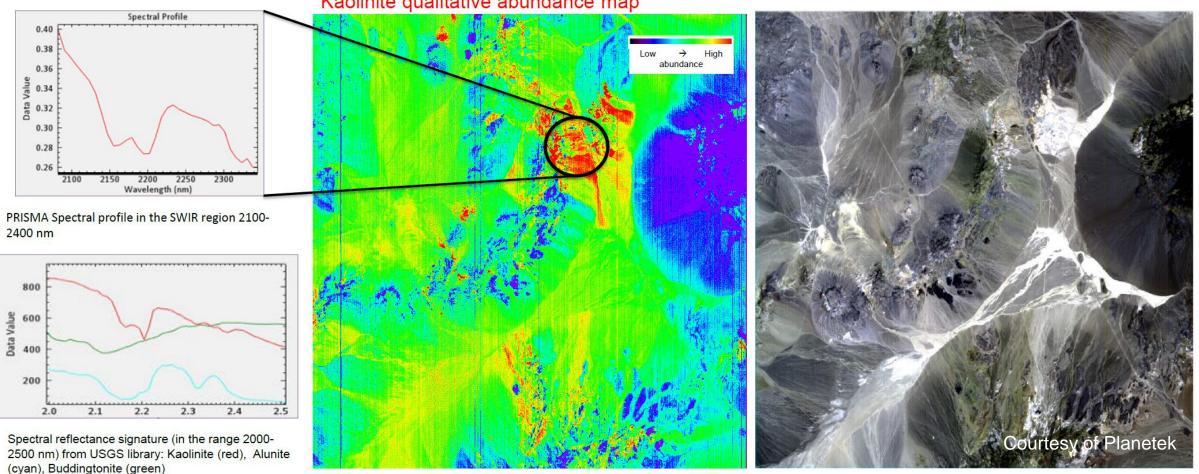

| Configuration                                                                                                      | Benefits                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detector (MCT)                                                                                                     | High-performance MCT detector required to<br>achieve SNR and MTF performances along the<br>spectral range. One detector covers the full<br>spectral range                                      |
| <ul> <li>Telescope:</li> <li>Ritchey Chretién corrected</li> <li>Primary mirror 300mm</li> <li>f# = 3.2</li> </ul> | Large pupil / compactness / simplicity / high TRL<br>/ available                                                                                                                               |
| <ul><li>Spectrometer:</li><li>Offner configuration</li><li>Dual blazed grating</li></ul>                           | Offner is a configuration well consolidated in<br>Leonardo being developed for FLORIS. Design is<br>optimised to use only spherical mirrors<br>(reducing manufacturing and integration costs). |
| Passive cooling (radiator)                                                                                         | No moving parts.<br>Based on consolidated technologies.                                                                                                                                        |

Optical

#### Hyperspectral Payload – Architectural Baseline



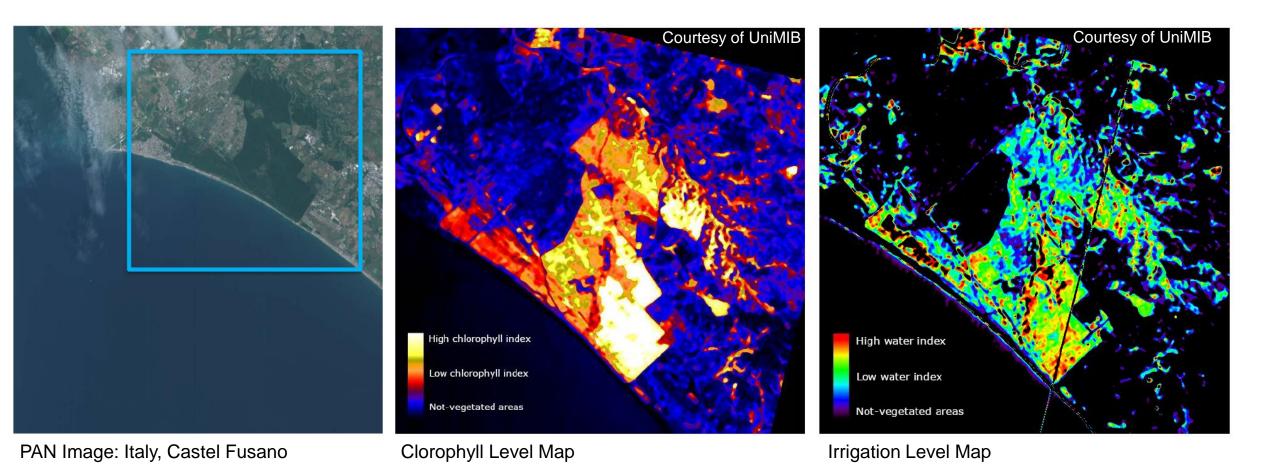



#### **Hyperspectral Payload – Some Applications**

| APPLICATION DOMAIN                               | THEMATIC AREA                                                                                                                |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Agriculture & Food Security                      | Assessment of Biophysical and Biochemical Variables Related to The Crops and of Agronomic Interest                           |
| Agriculture & Food Security                      | Top Soil Properties                                                                                                          |
|                                                  | Land Cover and Use                                                                                                           |
| Ecosystem Structure & Composition (Biodiversity) | Land Degradation                                                                                                             |
|                                                  | Vegetation Degradation                                                                                                       |
|                                                  | Water Quality Monitoring and Assessment of Biophysical Parameters                                                            |
|                                                  | Bottom Substrate Characterization, Benthic Communities Mapping and Monitoring                                                |
| Inland & Coastal Water                           | Shallow Water Bathymetry                                                                                                     |
|                                                  | Characterization and Detection of Floating Materials                                                                         |
|                                                  | Emerging Habitats And Wetlands                                                                                               |
| Geology & Minerals / Soils                       | Geophysical Parameter of Volcanic Activities                                                                                 |
| Urban Environment                                | Characterization and Mapping of Urban and Suburban Areas                                                                     |
|                                                  | Forest Fire Front Identification And Damage Assessment                                                                       |
| Natural and Man-made Hazards                     | Measurement of Air Pollution And Detection of Surface Phenomena from the Identification of Man Made and Natural Gas Emission |
|                                                  | Soil Pollution Related to Human Activities                                                                                   |
|                                                  | Water Pollution                                                                                                              |
| Cultural Heritage                                | Archaeology Site Identification                                                                                              |
| Forestry, Vegetation Parameters and Processes    | Vegetation Energy Dissipation Patways                                                                                        |
| Ice and Snow                                     | Cryosphere Optical Properties                                                                                                |

米

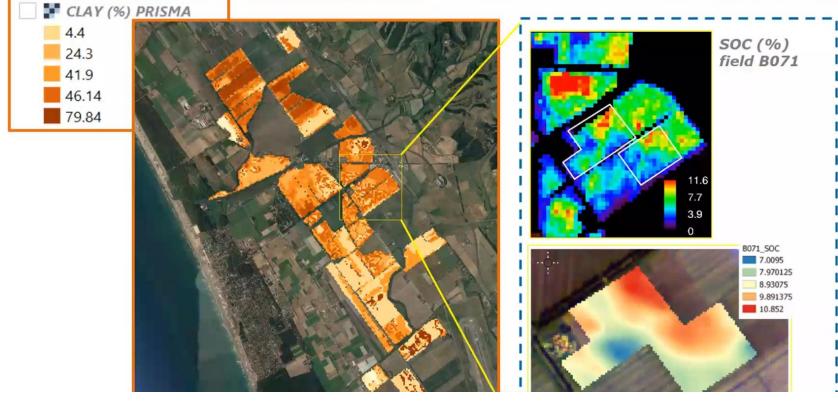
PRISMA mineral detection in Cuprite Hill (Nevada):


Spectral profiles of pixels extracted in a "data cube" and compared to known materials spectra library •



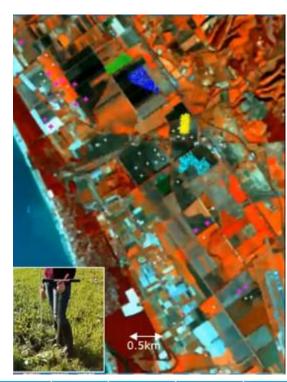
Kaolinite qualitative abundance map

\*


PRISMA offers a unique opportunity to detect vegetation stress and assess fire risk from space:

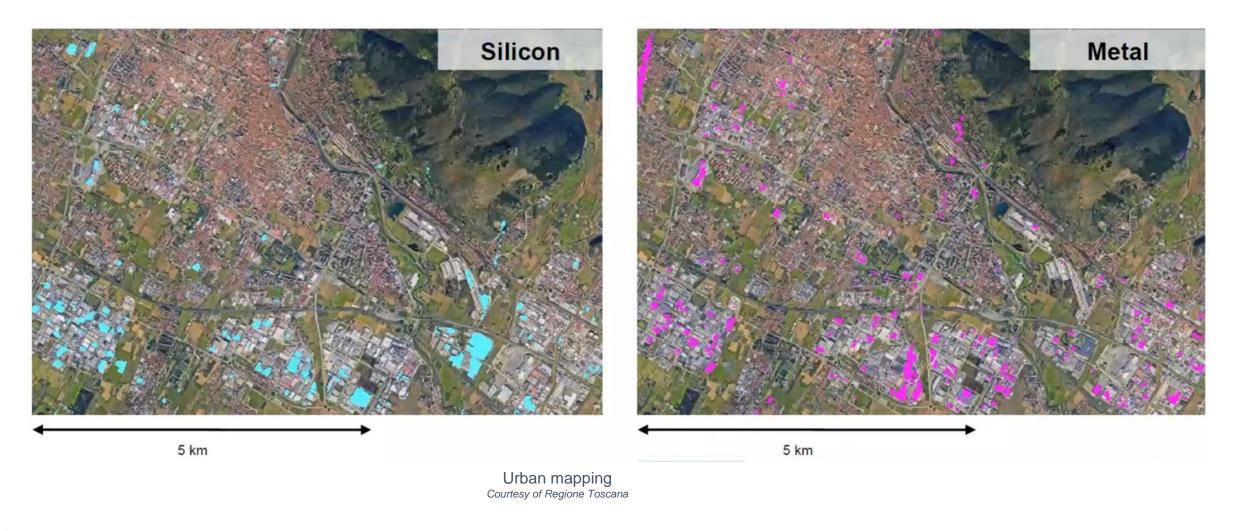


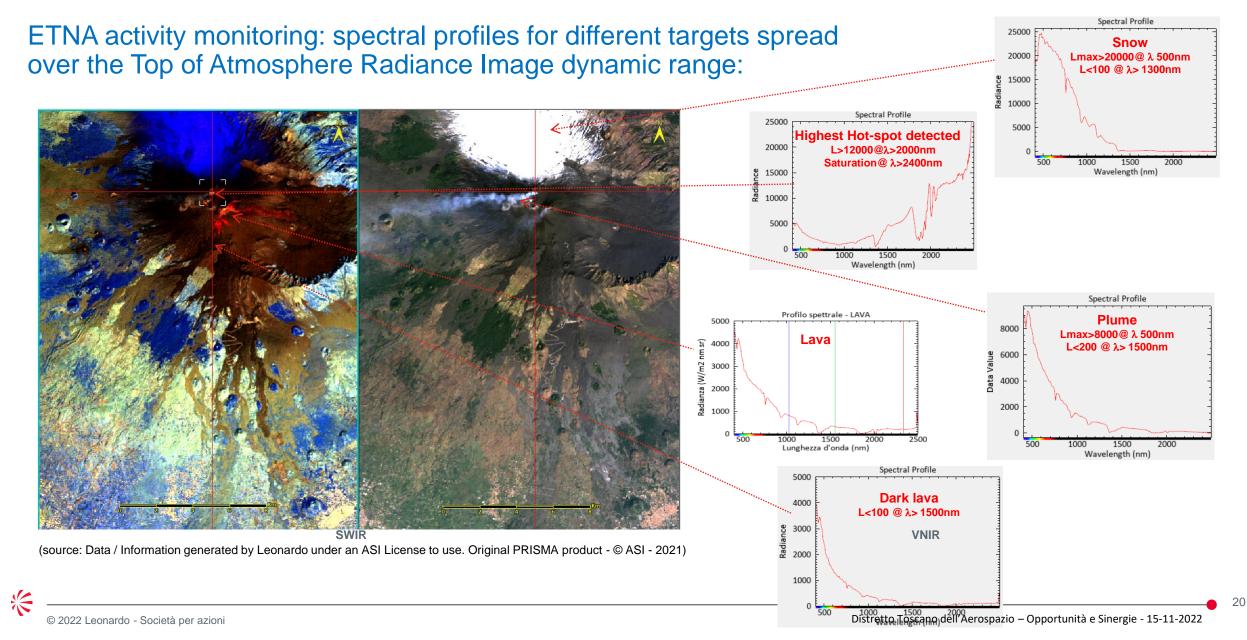
彩


Surface soil layer characterization and retrieval of soil properties: clay, sand, silt (sediment), soil organic carbon (SOC) and soil carbonates.

 One experimental site used in 2020 is a technological farm (3500 ha) in Maccarese (IT). It belongs to Cutanic Luvisol on alluvial deposits

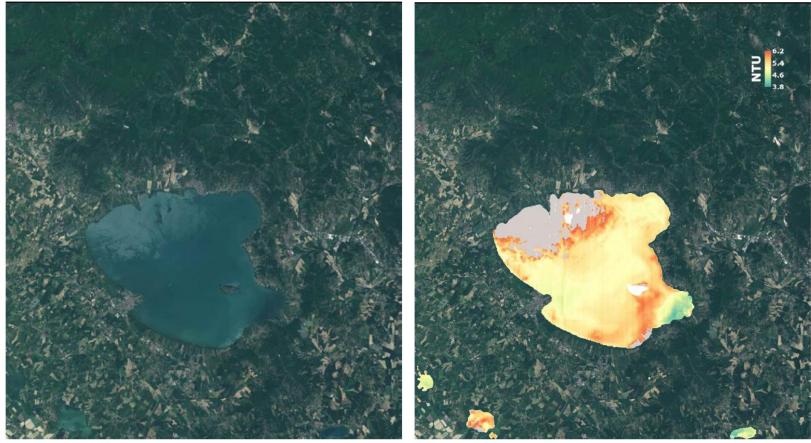



Precision farming Courtesy of Abaco


Soil Classification Courtesy of CNR-IMAA



|          | Min  | Max                  | Mean  | Dev.St. |
|----------|------|----------------------|-------|---------|
| clay     | 4,37 | 79,84                | 38,47 | 21,33   |
| silt     | 1,05 | 28 <mark>,</mark> 89 | 15,29 | 8,02    |
| claysilt | 6,96 | 96,49                | 53,76 | 26,56   |
| sand     | 3,51 | 93,04                | 46,23 | 26,56   |
| ос       | 0,18 | 2,10                 | 0,97  | 0,40    |


#### Detection of materials in urban areas:





Mapping of Water quality over Trasimeno Lake – Italy (lower NTU values means less turbidity):

VNIR RGB



Water turbidity map

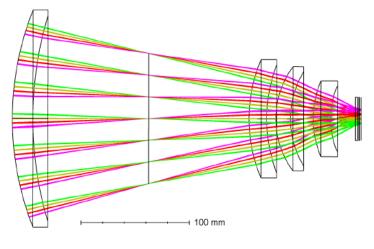


Courtesy of CNR-IREA

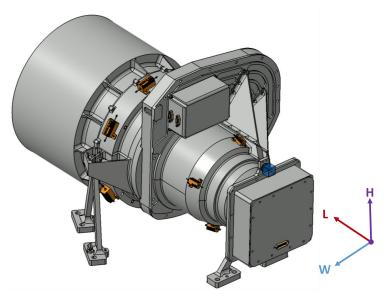
#### **Thermal InfraRed payload (TIR)**

**Termo-camera ad Infrarossi** 

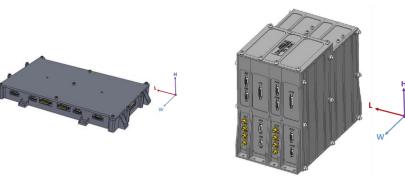



#### **TIR Payload**

- The TIR Camera is under development in Leonardo in the frame of Platino program.
- The delivery of the proto-flight model is planned by Q1 2024.
- P/L design targets applications based on minisatellites constellations and takes advantage of Leonardo heritage on thermal imagers for Space and Defence applications.
- TIR is an uncooled IR imager based on microbolometer detector covering the full spectral range.
- Typical applications:
  - Geology
  - Vulcanology
  - Combined imaging with VNIR Camera


| Parameter                           | Specification                                                                              |
|-------------------------------------|--------------------------------------------------------------------------------------------|
| Reference Orbit                     | 400 km                                                                                     |
| GSD                                 | 40m                                                                                        |
| Swath                               | 40Km                                                                                       |
| Spectral bands<br>(can be adjusted) | TIR1 8.6μm<br>TIR2 9.1μm<br>TIR3 10.3μm<br>TIR4 11.5μm                                     |
| MTF                                 | 0.2                                                                                        |
| NEdT                                | 0.8K @250K (TIR1&2)<br>0.4K @250K (TIR3&4)                                                 |
| Absolute Accuracy                   | 1.5K                                                                                       |
| Mass                                | OH: 16kg<br>PE: 3kg<br>PICU: 6kg<br>Harness: 3kg                                           |
| Volume                              | OH 540 x 390 x 320 mm<br>PE 330 x 215 x 40 mm<br>P-ICU 145 x 230 x 210 mm                  |
| Power Cons.                         | 60 W (incl. TCS) in Idle<br>85 W (incl. TCS) in Imaging<br>75 W (incl. TCS) in Calibration |

© 2022 Leonardo - Società per azion


## **TIR Payload Imager – Architectural Baseline**



Optical



| Configuration of main subassembly                  | Rationale                                                                                                                                                            |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Microbolometer detector                            | Best compromise between cost (COTS component), performances and needed resources needed (TEC-less technology). One detector covers the full spectral range (8-14µm). |
| Telescope: 4 lenses objective<br>f#=1              | Compactness / simplicity / high TRL / available /<br>higher MTF                                                                                                      |
| High Emissivity Shutter as Flight Calibration unit | OH thermal self-emission (offset) compensation and responsivity (gain) re-calibration                                                                                |



Mechanical

米

#### **Payload Imagers for Cubesat's**

**Camere Ottiche per Cubesat** 




#### **CubeSats**

- Smaller size and weight: these micro/nanosatellites follow the CubeSat standard which defines the outer dimensions within multiple cubic units of 10 x 10 x 10 cm
- Satellite subsystems are often available as "Commercial Off The Shelf" products
- Shorter development times
- Increased number of launch opportunities

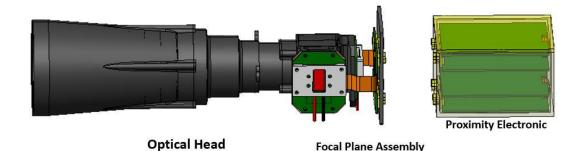


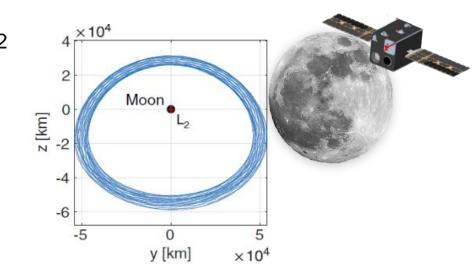




- LUMIO
- E.Inspector
- Vulcain

# **LUMIO Lunar Cubesat**



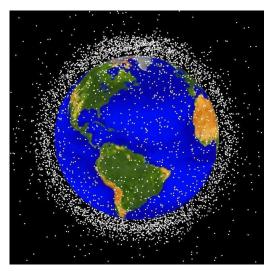




- LUMIO is a 12U CubeSat mission to a halo orbit at Earth–Moon L2
- It that shall observe, quantify, and characterize meteoroid impacts on the lunar far side by detecting their impact flashes, complementing Earth-based observations to provide global information on the lunar meteoroid environment and contribute to **Lunar Situational Awareness.**

#### LUMIO-Cam

**LUMIO-Cam** is a compact imager that will observe, quantify and characterize meteoroid impacts on the lunar far side by detecting their **impact flashes**.






s & t

Visible: 450-800 nm

- Infrared: 850-950 nm
- Double Focal Plane Assembly configuration
- 6 deg FOV
- 15 fps
- On-board processing

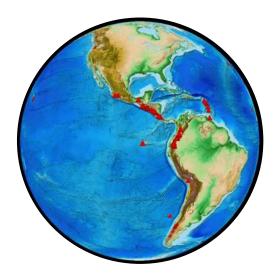
## **E.Inspector**

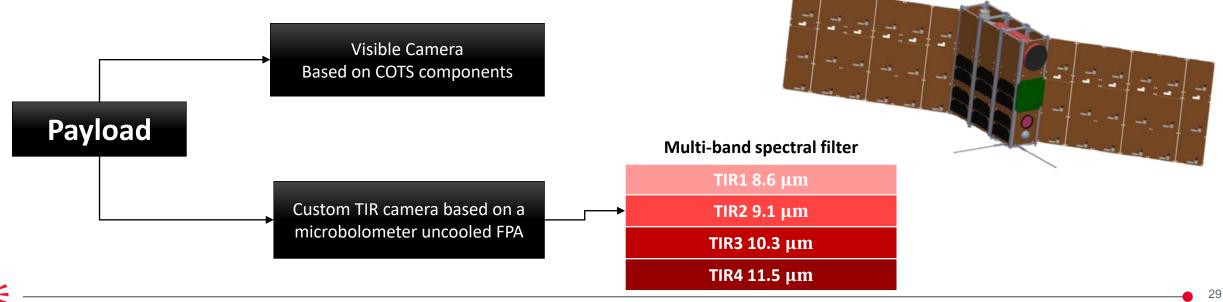




- 12 U CubeSat mission for large debris close inspection to support successful removal.
- The proposed architecture can manage different object image size and illumination conditions, it is flexible for different target scenarios.

| Visible             | e Camera | Payload      | InfraRed C       | camera         |
|---------------------|----------|--------------|------------------|----------------|
| Characteristics     | Value    |              |                  |                |
| Spectral Band       | RGB      |              | Characteristics  | Value          |
|                     | 20       |              | Spectral Band    | 7.5 to 13.5 μm |
| GSD @500 km         | 39 m     |              |                  |                |
| Swath @500 km 80 KM |          | Focal Length | 100 mm           |                |
|                     |          | Pixel Pitch  | 17 μm            |                |
| Focal Length        | 70 mm    |              | Number of pixels | 640 x 512      |
| Pixel Pitch         | 5.5 μm   |              |                  |                |





## **Vulcain**



Vulcain is a 12 U CubeSat mission aiming at:

- Increasing IR observation of Volcanoes to detect surface temperature changes related to volcano activity in the Thermal InfraRed channels (300-400 K)
- Combining VIS/TIR data to enhance observation by adding morphological analysis
- **Stereographic** acquisition: target observed with two cameras separated by a certain baseline





. . . . . . . . . . .



## THANK YOU FOR YOUR ATTENTION

#### leonardo.com

For more information please contact:

**Enrico Suetta** VP CTO & Capability Optronics & Space Line of Business Electronics Division

Email: <u>enrico.suetta@leonardo.com</u> Tel: +39 335 7499480 . .